Allele-Biased Expression in Differentiating Human Neurons: Implications for Neuropsychiatric Disorders
نویسندگان
چکیده
Stochastic processes and imprinting, along with genetic factors, lead to monoallelic or allele-biased gene expression. Stochastic monoallelic expression fine-tunes information processing in immune cells and the olfactory system, and imprinting plays an important role in development. Recent studies suggest that both stochastic events and imprinting may be more widespread than previously considered. We are interested in allele-biased gene expression occurring in the brain because parent-of-origin effects suggestive of imprinting appear to play a role in the transmission of schizophrenia (SZ) and autism spectrum disorders (ASD) in some families. In addition, allele-biased expression could help explain monozygotic (MZ) twin discordance and reduced penetrance. The ability to study allele-biased expression in human neurons has been transformed with the advent of induced pluripotent stem cell (iPSC) technology and next generation sequencing. Using transcriptome sequencing (RNA-Seq) we identified 801 genes in differentiating neurons that were expressed in an allele-biased manner. These included a number of putative SZ and ASD candidates, such as A2BP1 (RBFOX1), ERBB4, NLGN4X, NRG1, NRG3, NRXN1, and NLGN1. Overall, there was a modest enrichment for SZ and ASD candidate genes among those that showed evidence for allele-biased expression (chi-square, p = 0.02). In addition to helping explain MZ twin discordance and reduced penetrance, the capacity to group many candidate genes affecting a variety of molecular and cellular pathways under a common regulatory process - allele-biased expression - could have therapeutic implications.
منابع مشابه
RNA-Seq of Human Neurons Derived from iPS Cells Reveals Candidate Long Non-Coding RNAs Involved in Neurogenesis and Neuropsychiatric Disorders
Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormal...
متن کاملتمایز سلولهای بنیادی اندومتر رحم به نورون حرکتی با استفاده از ریزمولکول پورمورفامین
Background: Small molecule Purmorphamin (PMA) is the agonist of smoothened protein in Sonic hedgehog (Shh) signaling pathway. Effect of purmorphamin small molecule on differentiation of mesenchymal cells into bone tissue has been studied previously. Use of Shh causes progression of neural differentiation, and the differentiated cells express specific neural markers. Neurofilament (NF) and acety...
متن کاملNeuropsychological and Neuropsychiatric Deficits Following Traumatic Brain Injury: Common Patterns and Neuropathological Mechanisms
Traumatic Brain Injury (TBI) in all degrees of injury severity mainly induces deviant cognitive, emotional and behavioral alterations that lead to their respective disorders. This brief overview strives to define the variables that determine the risk of occurrence of these disorders and to describe the common patterns of these disorders and their relevant neuropathogenetic mechanism(s). In addi...
متن کاملP-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملBrain CB2 Receptors: Implications for Neuropsychiatric Disorders
Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB₂ receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB₂ receptor in the brain is significantly lower than that of the CB₁ receptor. Conflicting findings have been reported on the neurological effects of pharmacological a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012